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Viscous fluids which possess even a small degree of elasticity behave
in quite a different way from viscous fluids in non-steady-state flow
which is fairly fast. The presence of elasticity leads to a change in
the nature of the damping of small scale (high frequency) turbulent
eddies when the turbulence becomes degenerate [1]. The difference
in the specific properties of viscoelastic fluids manifests itself in the
behavior of these eddies.

The presence of sufficiently large-scale lasting super-molecular for-
mations in the fluid can impart to it "elastic” properties. Thefact that
the additive lags behind the solvent which is moving and accelerating
is associated with the relaxation of the translational degrees of free-
dom of the composite model. The effect of this relaxation on the
damping of high frequency eddies was treated in [1]. In what follows
the effect of rotational relaxation is examined. In a fluid with inter-
nal circulation the eddies break up in the following manner according
to the nature of the damping: the eddies with the largest and smallest
scales experience viscous (diffusive) damping, but local relaxation is
more important for the medium sized eddies, and they are damped
as exp (—t/6), where 61is a constant proportional to the time of the
rotational relaxation.

1. The processes associated with the reorganiza-
tion of fluid structure, which lead to the appearance of
elastic properties are extremely varied. The pheno-
menological models which describe the flow of such
fluids are also very diverse. We may thus expect that
there exist qualitatively different types of turbulence
for viscoelastic fluids. Although the nonlinear char-
acteristics of the different fluids are evened out in the
final stage of the damping of turbulence, the behavior
of the motion of the different scales is of interest in
the linear stage. In paper [1] it was shown that the de-
generation of turbulence for viscoelastic fluids with
the same relaxation time has a very general character:
the large scale motions are damped in the same way
as in a viscous fluid, and the small scale eddies dege-
nerate in a universal manner (independently of the di-
mension), but more rapidly than the large scale eddies,
and in the final stage, for times which are large, the
nature of the turbulence damping is completely deter-
mined by the large "viscous" eddies, which leads to
the asymptotic law t“"/ z,

However, for the examples of fluids with relaxation
of shear stress and shear velocity already considered
in [1] the differences in the damping of the motions of
the different scales turn out to be characteristic and
important.

The behavior of a fluid with shear velocity relaxa-
tion is similar to the behavior of a viscous fluid with
an effective viscosity which depends on the scale of
the motion under consideration. For motion with a
wave number k the effective viscosity has the form

vo (k) = v (1 + 2v0k%)-1 .

Here v and 9 are the constants of kinematic viscosity
and relaxation time. It-is clear from this expression

that the effective viscosity vy(k) falls off monotoni-~
cally as the scale of the motion decreases (as k in-
creases). Now if we compare the damping of turbuient
fluid motions where there is stress relaxation and the
damping of pulsations in a viscous fluid [1], then an
effective viscosity may be introduced which will de-
pend on the scale of the motion as follows:

vg (k) = [1 — (4 — 4vBE?)'2] (28F%)-1 .

From this it is clear that in contrast with the pre-
vious case the effective viscosity increases for the
large scale motions (from v when k = 0 to 2v when
k = (v6)~1/2/2), and (v6) ~1/? even becomes complexfor
small scale motions with k > 1/2 (in this case the en-
ergy spectrum of the motions oscillates in the high
frequency region with a frequency which increases
linearly and asymptotically for large k).

Even on the basis of this treatment of the linear
stage of the damping we may suppose that the nature
of fully developed turbulence will change radically
when the scale (v6) 1/2 becomes equal to the scale for
which the main part of the turbulent energy in a vis-
cous fluid occurs. If the length (v9)1/2 is comparable
to the inner scale of the turbulence this may lead to a
rearrangement of the high energy end of the spectrum
of turbulent kinetic energy. We may thus expect a
marked change in those turbulent motions whose scale
is less than or of the same order as the dimension of
the viscous zone of influence of the relaxation process
(vo) % 2. In what follows the behavior of turbulent mo-
tions is considered during the final stages of damping
for the case of a fluid with rotational structure relax-
ation.

2. The numerous investigations which have been
made of the hydrodynamics of dilute solutions of poly-
mers indicate that insignificant quantities of polymer
additive have a marked effect on the turbulent flow of
fluids. According to paper [2], one of the causes of
the damping effect of a polymer on turbulent eddies is
the presence of large supermolecular polymer aggre-
gates in the solution. The presence of a coarse addi-
tive leads to additional dissipative effects. The pres-~
ence of an additive leads to an effect by which the lag-
ging additive is tuned to the motion of the fluid. The
effect of this on fluid turbulence was treated in paper
[1] within the framework of a phenomenological model
with relaxation of deformation velocities. In addition
to this, tuning of the rotational motion of the additive
to the turbulent eddies occurs, which leads to vortex
relaxation of the fluid and additional dissipation of
energy. A phenomenological fluid model which took
this effect into account was proposed in [3}. Here we
shall treat some characteristic features of turbulence
for this model.
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The complete system of equations for an incompressible fluid with
internal circulation is

ov
5 + (V) V=—V(p MQ— aM?) |
+ (M -+Ya1) Av Yz ayrot M,

%—?—-+(vV)M=’r(ﬂ—aM)+uAM, (VW) =0. (2.1)

Here 9, 7, 1, and o (= 0) are the coefficients ofthe first and third
(vortex) viscosities, the diffusion of internal momentum M and the
structure coefficient; v is the velocity vecror, p is the pressure. The
system of units is chosen so that the density p = 1, i.e., all quantities
have been made kinematic (only length and time enter into the di-
mensionality) by dividing them by the constant density.

Taking the curl of the first equation of (2.1), we obtain

file]
57 — ot VRl =+ Y1) AQ 4, arrot rot M,

M
St (V) M= pAM + 1 (Q — aM),
Q=1hrotv, (Vv)=0. (2.2)

The system of equations (2.2) is like a similar system of equations
in magnetohydrodynamics; however, here there can be no question of
freezing-in of the field M. On the other hand the field M exhibits
both local departures from the equilibrinm state o™t Q, as well as
diffusive nonequilibrium for 2 nonuniforim distribution.

Equations (2.2) may be very much simplified in the
case of flow which allows linearization (for example in
the final stage of damping turbulence). In this case
when the field M is eliminated from the first two equa-
tions of (2.2) we obtain

o+ Loy — (- Yar +w A 22
—onAQ +p(n+ Yar) AR =0,
rQ = (ait_pM-ay)M . (2.3)

It is clear from (2.3) that the variation of angular
velocity @ and internal momentum M for the motion of
a given scale size occurs in the same way in the final
stage, although the initial distributions may have been
different (since the equations do not coincide for the
nonlinear stage), and consequently it suffices to speak
about one of the fields only.

The degeneration of motions with various scale
sizes occurs independently in the final stage, and so it
is convenient to describe it in terms of wave space,
taking the Fourier transform of Eq. (2.3). When this
is done the equation for

o (k)= SLR,SQ (r) emike @37
assumes the form
T Lo + (0 + et + ) 92
+ karne + p(n+ Y e =0. (2.4)

If we look for a solution in the form e5t we obtain
for s
2s =~ lay + B (n + Yy +w)] LA{loy +
+E @+ -+ —dayh® —p (Y, y) KR (2.5)

Since this expression is always real and negative,
motions of all scale sizes are damped smoothly (with-

out oscillation). Of the two roots in (2.5) it suffices to
retain the one which gives rise to the slower damping,
i.e., that with the plus sign. Expanding the expressions
under the radical in series and introducing the
symbol 7 = (ay) ~! for the time of local relaxation [3]
of internal momentum M, we obtain

1wk (4 4 Yay/n)

2 = — i S e
1+ vk2p (1 +Yar/m)

T T e (n T+ VP

+} (2.6)

This expression (compare with formula (2.3) of
paper [1]) shows that the damping of motions in such a
fluid maybe described by an effective viscosity k—2s (k),
which tends to n as k — 0 (large scale irregularities),
i.e., the large eddies are damped with time as
exp(—7 - k’t) in the same way as eddies in an ordinary
viscous fluid with viscosity 7.

We again make use of Egs. (2.3) in order to de-
scribe pulsations with large wave numbers k: itis clear
that the field is specified by the change of the field M,
which occurs in different ways depending on which
relaxation mechanism predominates: local relaxation
with time 7 or diffusive relaxation with a character-
istic time (k%) ™! for motion having a scale ~k-1.

For motions whose wave numbers satisfy the con~
dition uk®>> 1/t (small scale motions), diffusive relax~
ation determines the basic change of the field M. In
this case it may be seen from (2.3), that damping of
the motions is described by two types of relations:
exp[~(n + y/4)k’] and exp[—uk®t]. When one of them
predominates, the damping is similar to the damping
of motion in a viscous fluid with viscosity n + v/4 < u
or with viscosity u < n + y/4.

In the opposite case pk® < 1/7, whenlocal relaxation
of the vector M exerts the predominant influence, Egs.
(2.8) assume the form

2Q i oQ AQ
T [ — (Y ]G — 2R =0,

79=<%+—)M. (2.7)

It is clear from this that for k’(y + v/4) < 1/7 (large
scale motions) the medium rapidly approaches local
equilibrium and the damping has a purely viscous
character, The smallness of k is determined
here by the relations k? << (tp) =%, k* « 7=1 (5 + y/4)-1.
On the other hand, for k¥(n + v/4) > 1/, local relaxa-
tion plays the main role and the damping law has the
universal form exp(~t/8). Here the relaxation time
6 =7(1+ y/4n) > 7. Motions with wave numbers k in
the interval (ur) !> k*>» 7-1(n + v/4)~!, assuming
that this interval exists, are damped in this way.

Thus, generally speaking, wave number space may
be divided into three regions: the region of small k
where the damping of motion is similar to damping ina
viscous fluid with viscosity n, the region of medium k
with universal damping exp(—t/¢), and finally the re~
gion of large k where the damping is like that in a vis-
cous fluid with viscosity constants 5 + y/4 and p. The
fact that the damping of motions in a fluid with internal
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circulation is of a more complicated nature than was
encountered in [1] is associated with the presence of a
large number of characteristic relaxation times: in
addition to the viscous damping times (nk?) ™1, k=2 (n +
+ v/4) =1, which characterize the rotational rearrange-
ment of the fluid structure.

Because of the linear relation (2.3) between Q and
M vortex irregularities of the field M with given k are
damped with time in the same way as pulsations of Q,
while the nonrotational part of the field is damped as
exp [~ t (1/7 + pk?]. As regards the total kinetic en-
ergy of turbulent motion, we note that in the final stage
of degeneration of the turbulence, when motions with
scale sizes legs than the dimension of the zone of in-
fluence of structure relaxation 71/2(n + p + y/4) /2 are
practically damped, the decrease of kinetic energy is
described by the lawt™5/%, as for a viscous fluid.
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