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Viscous fluids which possess even a small degree of elasticity behave 
in quite a different way from viscous fluids in non-steady-state flow 
which is fairly fast. The presence of elasticity leads to a change in 
the natuxe of the damping of small scale (high frequency) turbulent 
eddies when the turbulence becomes degenerate [1]. The difference 
in the specific properties of viscoelastic fluids manifests itself in the 
behavior of these eddies. 

The presence of sufficiently large-scale lasting super-molecular for- 
mations in the fluid can impart to it "elastic" properties. The fact that 
the additive lags behind the solvent which is moving and accelerating 
is associated with the relaxation of the translational degrees of free- 
dom of the composite model. The effect of this relaxation on the 
damping of high frequency eddies was treated in [1]. In what follows 
the effect of rotational relaxation is examined. In a fluid with inter- 
nal circulation the eddies break up in the following manner according 
to the nature of the damping: the eddies with the largest and smallest 
scales experience viscous (diffusive) damping, but local relaxation is 
mo~e important for the medium sized eddies, and they are damped 
as exp (-t/0), where 0 is a constant proportional to the time of the 
rotational relaxation. 

1. The p r o c e s s e s  a s s o c i a t e d  with the r e o r g a n i z a -  
t ion of f luid s t r u c t u r e ,  which l ead  to the appea rance  of 
e l a s t i c  p r o p e r t i e s  a r e  e x t r e m e l y  v a r i e d .  The  pheno-  
meno log i ca l  mode ls  which d e s c r i b e  the flow of such 
f luids  a r e  a l so  v e r y  d i v e r s e .  We m a y  thus expect  that 
t he r e  ex i s t  qua l i t a t ive ly  d i f fe ren t  types  of tu rbu lence  
for  v i s c o e l a s t i c  f luids.  Although the non l inear  c h a r -  
a c t e r i s t i c s  of the d i f fe ren t  f luids a r e  evened out in the 
f inal  s tage  Of the damping of tu rbu lence ,  the behav io r  
of the mot ion  of the d i f ferent  s c a l e s  i s  of i n t e r e s t  in 
the l i nea r  s tage.  In paper  [1] i t  was shown that the d e -  

gene ra t i on  of tu rbu lence  fo r  v i s c o e l a s t i c  fluids with 
the s a m e  r e l axa t i on  t ime  has a v e r y  g e n e r a l  cha rac t e r :  
the l a r g e  s c a l e  mot ions  a r e  damped in the s a m e  way 
as in a v i s cous  fluid,  and the s m a l l  s c a l e  eddies  d e g e -  

n e r a t e  in a u n i v e r s a l  m a n n e r  ( independently of the d i -  
mens ion) ,  but m o r e  r ap id ly  than the l a r g e  s c a l e  eddies, 

and in the final  s tage ,  for t imes  which a re  l a rge ,  the 
na tu re  of the tu rbu lence  damping is comple t e ly  d e t e r -  
m ined  by the l a r g e  " v i s c o u s "  eddies ,  which leads to 
the a sympto t i c  law t -5/2. 

However ,  fo r  the examples  of f luids with r e l axa t ion  
of shea r  s t r e s s  and shea r  ve loc i ty  a l r eady  con s ide r ed  

in [1] the d i f f e r e n c e s  in the damping  of  the mot ions  of 
the d i f fe ren t  s c a l e s  tu rn  out to be c h a r a c t e r i s t i c  and 

impor tan t .  
The  behav io r  of a f luid with s h e a r  ve loc i t y  r e l a x a -  

tion is  s i m i l a r  to the behav io r  of a v i scous  fluid with 
an e f fec t ive  v i s c o s i t y  which depends on the sca le  of 

the mot ion  under  cons ide ra t ion .  F o r  mot ion with a 

wave number  k the e f fec t ive  v i s c o s i t y  has  the f o r m  

~ (k) = v (1 + 2yOke) -1 .  

Here  v and 0 a r e  the cons tants  of k inemat i c  v i s c o s i t y  

and r e l axa t ion  t ime .  I t  is c l ea r  f r o m  this e x p r e s s i o n  

that  the e f fec t ive  v i s c o s i t y  v0(k) fa l l s  off m o n o t o n i -  
ca l ly  as the s c a l e  of the mot ion  d e c r e a s e s  (as k i n -  
c r e a s e s ) .  Now if we c o m p a r e  the damping  of  turbulent  
f luid mot ions  where  t h e r e  is s t r e s s  r e l a x a t i o n  and the 
damping of pu lsa t ions  in a v i s cous  fluid [1], then an 
e f f ec t ive  v i s c o s i t y  may  be in t roduced  which wil l  d e -  
pend on the s ca l e  of the mot ion  as fo l lows:  

vs (k) = [t - -  (l - -  4~;Ok2)V '1 (20k2) -1 . 

F r o m  this  it is  c l e a r  that  in con t r a s t  with the p r e -  
v ious  case  the e f fec t ive  v i s c o s i t y  i n c r e a s e s  for  the 
l a r g e  s ca l e  mot ions  ( f rom v when k = 0 to 2v when 
k = (v0)-~/2/2), and (v0)-1/2 even b e c o m e s  c o m p l e x f o r  

sma l l  s ca l e  mot ions  with k > 1 /2  (in this  ca se  the en- 
e r g y  s p e c t r u m  of the mot ions  o s c i l l a t e s  in the high 
f r e q u e n c y  r eg ion  with a f r equency  which i n c r e a s e s  

l i n e a r l y  and a s y m p t o t i c a l l y  fo r  l a r g e  k). 
Even on the b a s i s  of this  t r e a t m e n t  of the l i n e a r  

s tage  of the damping we may  suppose  that the na ture  
of ful ly developed tu rbu lence  wil l  change r a d i c a l l y  
when the s c a l e  (v0) 1/2 b e c o m e s  equal  to the s ca l e  for  
which the ma in  par t  of the turbulent  e n e r g y  i n  a v i s -  
cous fluid o c c u r s .  If the length (vO)l/2 is c o m p a r a b l e  

to the inner  s ca l e  of  the tu rbu lence  this  may  lead  to a 
r e a r r a n g e m e n t  of the high e n e r g y  end of the s p e c t r u m  

of turbulent  k ine t ic  energy .  We m a y  thus expec t  a 
m a r k e d  change in those  tu rbu len t  mot ions  whose s ca l e  
i s  l e s s  than or  of the s a m e  o r d e r  as the d imens ion  of 
the v i s cous  zone of inf luence  of the r e l a x a t i o n  p r o c e s s  
(vO) 1/2. In what fo l lows the behav io r  of turbulent  m o -  

t ions is c o n s i d e r e d  during the f inal  s t ages  of damping  
f o r  the case  of a fluid with ro ta t iona l  s t r u c t u r e  r e l a x -  
ation. 

2. The  n u m e r o u s  inves t iga t ions  which have  been  
made  of the h y d r o d y n a m i c s  of di lute  so lu t ions  of po ly -  

m e r s  ind ica te  that  ins ign i f ican t  quant i t ies  of p o l y m e r  
addi t ive  have  a m a r k e d  e f fec t  on the turbulent  flow of 
f luids .  A c c o r d i n g  to pape r  [2], one of the causes  of 
the damping  e f fec t  of a p o l y m e r  on tu rbu len t  eddies  is 
the p r e s e n c e  of l a rge  s u p e r m o l e c u l a r  p o l y m e r  a g g r e -  
ga tes  in the solut ion.  The  p r e s e n c e  of  a c o a r s e  add i -  

t ive  leads  to addi t ional  d i s s ipa t i ve  e f fec t s .  The  p r e s -  
ence of an addi t ive  leads  to an e f fec t  by which the lag-~ 
ging addi t ive  is tuned to the mot ion  of the f luid.  The  
e f fec t  of this on fluid tu rbu lence  was t r e a t e d  in paper  
[1] within the f r a m e w o r k  of a phenomenolog ica l  mode l  
with r e l a x a t i o n  of de fo rma t ion  v e l o c i t i e s .  In addit ion 
to this ,  tuning of the ro t a t iona l  mot ion  of  the addi t ive  

to the turbulent  eddies  occu r s ,  which leads  to v o r t e x  
r e l axa t i on  of the fluid and addi t ional  d i s s ipa t ion  of 
energy .  A phenomenolog ica l  f luid model  which took 

this  e f fec t  into account  was p roposed  in [3]. H e r e  we 

shal l  t r e a t  some  c h a r a c t e r i s t i c  f ea tu re s  of tu rbu lence  

for  this model .  
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The complete system of equations for an incompressible fluid with 
internal cixeulation is 

Ov 
0--T -[- ( v V )  v = - -  V (p  -[- Mf~ - -  aM~) -}- 

+ ('q + V~ 7) Av + V~ ~T rot M, 

OM 
-~- -}- (vV) M = "; (P~-- aM) + IxAM, (Vv) = 0. (2.1) 

Here ~, ?,, g, and a (_> 0) are the coefficients ofthe first and third 
(vortex) viscosities, the diffusion of infernal momentum M and the 
structure coefficient; v is the velocity vector, p is the pressure. The 
system of units is chosen so that the demity p = 1, i.e., all quanti~ies 
have been made kinematic (only lengda and time enter into the dl- 
mensionality) by dividing them by the constant density. 

Taking the curl of the first equation of (2.1), we obtain 

0fl 
-~- -- rot [vfl] = (rl + ~/~ 39 Aft + ~fi ~'; rot rot M, 

0M 
-if/- + (vV) M = ~aM + ~ (O -- ~M), 

fl = X/zrotv, (Vv)=0. (2.2) 

The system of equations (2.2) is like a similar system of equations 
in magnetohydrodynamies; however, here there can be no question of 
freezing-in of the field M. On the other hand the field M exhibits 
both local departures from the equilibrium state c~'la, as well as 
diffusive nonequitibrium for a nonuniform distribution. 

Equat ions  (2.2) may  be ve ry  much s impl i f ied  in the 
case  of flow which allows l i n e a r i z a t i o n  {for example in 
the f inal  stage of damping turbulence) .  In this case  
when the field M is e l imina ted  f rom the f i r s t  two equa-  
t ions  of (2.2) we obtain 

ot 

- ~ r n A ~  + ~ (n + 1/a') a . ~  = 0 ,  

it is c l ea r  f rom (2.3) that the va r i a t i on  of angu la r  
veloci ty  ~ and in te rna l  m o m e n t u m  M for the mot ion of 
a given sca le  s ize  occurs  in the s ame  way in the f inal  
s tage,  although the in i t ia l  d i s t r ibu t ions  may  have been 
di f ferent  (s ince the equat ions  do not coincide for the 
non l i nea r  stage),  and consequent ly  it suffices to speak 
about one of the f ields only. 

The degenera t ion  of mot ions  with va r ious  sca le  
s izes  occurs  independent ly  in the f inal  s tage,  and so it  
is convenient  to desc r ibe  it in t e r m s  of wave space,  
taking the F o u r i e r  t r a n s f o r m  of Eq. (2.3). When this 
is  done the equation for 

r (k) = 8-~ I fl (r) e- '~ d~r 

a s s u m e s  the form 

ot'-'r "[- [~'r + OI + %,'r + ix) k 1D-? + 

+ k~aTq o) + I ~ (n + ~/~T) k'co = 0. (2.4) 

If we look for a solut ion in the fo rm eSt we obtain 
for s 

2 s = -  In7 + / ~  (~--k ~1,7 +/x)] __+.{lay--t- 

+ k~ (n + t / , r  +~)1  ~ - 4 a r n k  ~ - ~ ( n + ' / ,  r) k'}'/,. (2. ~) 

Since this  exp res s ion  is  always rea l  and negat ive ,  
mot ions  of all  sca le  s izes  a re  damped smoothly  (with- 

out osci l la t ion) .  Of the two roots  in (2.5) it suff ices to 
r e t a i n  the one which gives r i s e  to the s lower  damping,  
i .e . ,  that with the plus sign. Expanding the expres s ions  
under  the rad ica l  in s e r i e s  and in t roducing  the 

symbol  �9 = (~7)-1 for  the t ime  of local  r e laxa t ion  [3] 
of in te rna l  m o m e n t u m  M, we obtain 

~k 2 l + ~k~r~ il + ~l,'r/~i) f l  
s (k) = - -  ,, ., + ~k~ (~ + ~ + ~/;f) ~ + 

i + 'rk~li ('1 + ah~/rl) / 
+ T~lk~ [l + xk~ (~1 + 7  q- V4~')] ~ ~ . . . .  j (2.6) 

This  express ion  (compare  with fo rmula  (2.3) of 
paper  [1]) shows that the damping of mot ions  in such a 
fluid m a y b e  desc r ibed  by an effective v i scos i ty  k -2s  (k), 
which tends to V as k ~ 0 ( large sca le  i r r e g u l a r i t i e s ) ,  
i . e . ,  the la rge  eddies  a re  damped with t ime  as 
exp( -v  .k2 t )  in the same way as eddies in an o rd ina ry  
v i scous  fluid with v i scos i ty  ~7. 

We again make use  of Eqs. (2.3) in o r de r  to de -  
sc r ibe  pu lsa t ions  with l a rge  wave n u m b e r s  k: it is c l ea r  

that the f ield is specif ied by the change of the field M, 
which occur s  in d i f ferent  ways depending on which 
r e l axa t ion  m e c h a n i s m  p r e domi na t e s :  local  r e laxa t ion  
with t ime  r or diffusive r e l axa t ion  with a c h a r a c t e r -  
is t ic  t ime  (k2~)-I for  mot ion having a scale  Nk-1. 

F o r  mot ions  whose wave n u m b e r s  sa t i s fy  the con-  
di t ion #k 2 >> 1 / r  (smal l  sca le  mot ions ) ,  diffusive r e l a x -  
at ion d e t e r m i n e s  the bas ic  change of the field M. In 
this case  it  may  be seen  f rom (2.3), that damping of 
the mot ions  is de sc r ibed  by two types of r e l a t ions  : 

exp[-0? + T/4)k2t] and exp[-#k2t] .  When one of them 
p redomina te s ,  the damping is s i m i l a r  to the damping 
of mot ion  in a v i scous  fluid with v i scos i ty  7? + T/4 < # 
or  with v i scos i ty  # < ~? + T/4. 

In the opposite case ~k 2 << l / T ,  when local  r e laxa t ion  
of the vec tor  M exer t s  the p redominan t  inf luence,  Eqs.  
(2.3) a s sume  the form 

ot~ ~- - -  O1 + 114";) h - - ~  �9 

(2.7) 

It is c l ea r  f rom this that for k2(~ + 2//4) << 1/r  ( large 
sca le  mot ions)  the med ium rap id ly  approaches local  
e qu i l i b r i um and the damping has a pure ly  v iscous  
cha rac te r .  The s m a l l n e s s  of k is de t e rmined  
he re  by the r e l a t i ons  k 2 << (zp) -1, k 2 << r -1 (~7 + 2//4) -1- 
On the other  hand,  for k2b? + 2//4) >> l / r ,  local  r e l a x a -  
t ion plays the ma in  ro le  and the damping law has the 
u n i v e r s a l  form exp ( - t / 0 ) .  Here  the r e l axa t ion  t ime  
0 = r (1 + y/4~?) > r.  Motions with wave n u m b e r s  k in 
the in te rva l  (#r)-1 >> k 2 >> 7._1 (7? + 3//4)_1, a s s u m i n g  
that this in te rva l  ex is t s ,  a re  damped in this way. 

Thus ,  ge ne r a l l y  speaking,  wave n u m b e r  space may  
be divided into th ree  r e g i o n s :  the region  of smal l  k 
where  the damping  of motion is s i m i l a r  to damping in a 
v i scous  fluid with v i scos i ty  7, the reg ion  of m e d i u m  k 
with tmiversa l  damping exp ( - t / 0 ) ,  and f ina l ly  the r e -  
gion of l a rge  k where the damping is  like that in a v i s -  
cous fluid with v i scos i ty  constants  ~ + 3/4 and ~. The 
fact that the damping of mot ions  in a fluid with in te rna l  
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c i r c u l a t i o n  is of a m o r e  c o m p l i c a t e d  na tu re  than was 
encoun te r ed  in [1] i s  a s s o c i a t e d  with the p r e s e n c e  of a 
l a r g e  n u m b e r  of c h a r a c t e r i s t i c  r e l a x a t i o n  t i m e s :  in 
addi t ion  to the  v i s c o u s  damping  t i m e s  (~?k 2) -1, k-2 (~7 + 
+ 7/4)-1,  which c h a r a c t e r i z e  the  ro t a t i ona l  r e a r r a n g e -  
men t  of the f luid s t r u c t u r e .  

B e c a u s e  of the l i n e a r  r e l a t i o n  (2 .3 )be tween  f~ and 
M v o r t e x  i r r e g u l a r i t i e s  of the f i e ld  M with given k a r e  
damped  with t i m e  in the s a m e  way as pu l sa t i ons  of  ~ ,  
while  the nonro ta t iona l  p a r t  of the f i e ld  i s  damped  as  
exp [ -  t (1/7 + ~k2)]. As r e g a r d s  the to ta l  k ine t i c  e n -  
e r g y  of tu rbu len t  mot ion ,  we note  that  in the f inal  s tage  
of degene ra t i on  of the tu rbu lence ,  when mot ions  with 
s c a l e  s i z e s  l e s s  than the d imens ion  of the zone of in-  
f luence  of s t r u c t u r e  r e l a x a t i o n  z l /~(~  + # + 7/4)1/2 a r e  
p r a c t i c a l l y  damped,  the d e c r e a s e  of k ine t ic  e n e r g y  is  
d e s c r i b e d  by the law t -5/2,  as  for  a v i s cous  fluid.  
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